Atomic level simulations on a million particles: The cell multi pole method for Coulomb and London nonbond interactions
نویسندگان
چکیده
The N 2 computations implicit in the Coulomb and other long range interactions remain the critical bottleneck in atomic-level simulations of the structure and dynamics of large systems. We report here the cell mUltipole method which scales linearly with N and requires only modest memory. To demonstrate the feasibility of this approach, we report systematic calculations on realistic polymer systems with up to 1.2 million atoms on a laboratory workstation. The method becomes faster than the exact method for systems of 300 atoms, and for a 1.2 million-atom polymer, it is 2377 times faster. The method treats a class of interactions of the form qB/l/p which includes Coulomb (p= 1), London dispersion (p=6), or shielded Coulomb (p = 2) interactions. This method is well suited for highly parallel and vector computers.
منابع مشابه
Secondary Particles Produced by Hadron Therapy
Introduction Use of hadron therapy as an advanced radiotherapy technique is increasing. In this method, secondary particles are produced through primary beam interactions with the beam-transport system and the patient’s body. In this study, Monte Carlo simulations were employed to determine the dose of produced secondary particles, particularly neutrons during treatment. Materials and Methods I...
متن کاملAn investigation of neutron direct damages at energies of 0.1-2 MeV on the DNA molecules with atomic structure deduced using Geant4 toolkit
This study proposes a method to estimate RBE of fast neutrons using Monte Carlo simulations. This approach is based on the combination of an atomic resolution DNA geometrical model and Monte Carlo simulations for tracking particles. Atomic positions were extracted from the Protein Data Bank. The GEANT4 code was used for tracking the secondary particles generated by fast neutrons during their in...
متن کاملAtomic Insights into the Melting Behavior of Metallic Nano-catalysts
In the present study, molecular dynamics simulations have been utilized to provide fundamental understanding of melting behavior of pure Pd and Pt nanoparticles with the size of 10 nm in diameter, both free and graphene-supported during continuous heating. The embedded atom method is employed to model the metal-metal interactions, whereas a Lennard-Jones potential is applied to describe the met...
متن کاملFinite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy
The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...
متن کاملMolecular simulations of intermediate and long alkanes adsorbed on graphite: tuning of non-bond interactions.
The interplay between the torsional potential energy and the scaling of the 1-4 van der Waals and Coulomb interactions determines the stiffness of flexible molecules. In this paper we demonstrate for the first time that the precise value of the nonbond scaling factor (SF)--often a value assumed without justification--has a significant effect on the critical properties and mechanisms of systems ...
متن کامل